Lecture 13 2025-10-07

Today: mixed-integer programs

So far, the taxonomy of optimization problems has been:

- 1. Unconstrained vs. constrained
- 2. Convex vs. non-convex
- 3. Smooth us non-smooth
- 4. Continuous vs. discrete } Today
- 5. Determnistre vs. stochastre

Local vs. global methods:

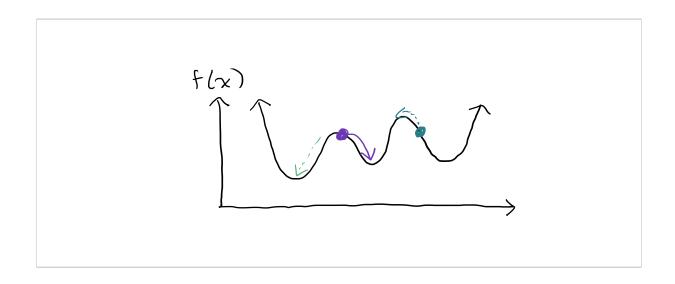
Local methods: so four, we've focused on local methods; given an mitial point $x^{(0)}$, iteratively

take "small" steps $\Delta x^{(R)}$ until necessary conditions of optimality are salisfied.

Pro: smple to implement and debug, computationally

trexpensive (have polynomial time algorithms for many convex algorithms)

Con: sensitive to initial guess x (0) and can get stuck in local minima for non-convex problems

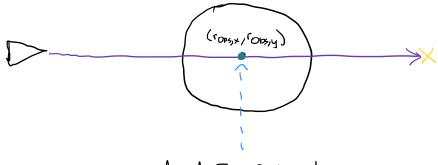


e. g. Obstacle avoidonce problems: n

"pathological" cases, cannot get unstrick

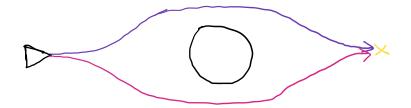
constraint: (x-rons,x)2 + (y-rons,y)2 > rmn

$$\Rightarrow$$
 gradiend: $\left(-\left(\chi-r_{0ps_{j}\chi}\right)\right)$



gradient Vg = O here!

combinatorial choices: have two equally valid global optima to choose from:



Global methods: searches over full space to find globally optimal solution

We'll cover three global search techniques in the coming weeks:

- 1. Integer programs
- 2. Approximate methods
- 3. Random search

Integer programming:

mm
$$\sum_{k=1}^{N} g_k(x_k, u_k, z_k)$$

subj. to:
$$x_{R+1} = f(x_R, u_R, z_R)$$
 $k=0,...,N-1$

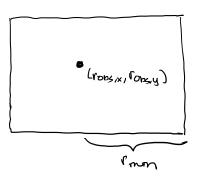
XRE Rnx URE Mnn

 $Z_R \in \mathbb{Z}^{n_Z} \leftarrow used to capture combinedorral or logical constraints in decision making$

Without loss of generality, we'll work with broary decision variables $5k \in \{0,1\}^{n_z}$ as we can reformulate where and broary programs with one another

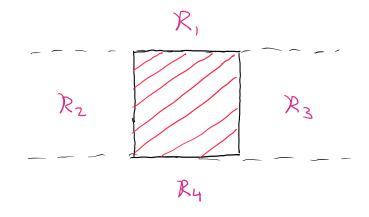
Mixed integer programs (MIPs) are used to model

Collision avordance: X & Xoos



constraint: (2-rops, x, y-rops,y)), > rmn

using integer programming, we can rewrite this as a disjunctive constraint



X&Xons = XER, VXER2VXER3VXER4

Let's consider each region's constraints:

 \mathcal{R}_{i} : $\chi_{R,y} \geq r_{ops,y} + r_{mn} \rightarrow (r_{ops,y} + r_{mn}) - \chi_{R,y} \leq O M (1 - 5^{(1)})$

$$\chi_2: \chi_{k,x} - (r_{ons,x} - r_{min}) \leq 0$$
 $M(1-5^{(2)})$
 $\chi_{k,y} - (r_{ops,y} + r_{man}) \leq 0$ $M(1-5^{(2)})$

$$(r_{obs,y} - r_{min}) - \chi_{k,y} \leq O \quad M(1 - s^{(2)})$$

$$\sum_{i=1}^{4} \delta^{(i)} = 1$$

$$R_3: (r_{obs,x} + r_{mm}) - \chi_{R,x} \leq 0 \quad M(1 - 5^{(3)})$$

$$\chi_{R,y} - (r_{0bs,y} + r_{mm}) \leq 0 \quad M(1 - 6^{(3)})$$

 $(r_{0bs,y} - r_{mm}) - \chi_{R,y} \leq 0 \quad M(1 - 6^{(3)})$

We can use the bog-M approach to enforce the disjoint constraint where M >> O is some suffriently large number

 \rightarrow Entroduce a browny variable $5^{(1)}$ for each region above, where $5^{(1)} \in \{0, 1\}$

The key constraint is then: $\underset{z=1}{\overset{4}{\leq}} 5^{(\overline{z})} = 1$

Note that if $S^{(i),*} = 0$, then the inequality it's used on is trivially satisfied:

e.g., For
$$\mathbb{R}_4$$
, if $S^{(4), +} = 0$, then:
 $\chi_{R, Y}^+ - (r_{ODS, Y} - r_{min}) \leq M$

so any value of $x_{r,y}$ trivally satisfies the constraint with $8^{(4),+} = 0$ plugged in

Alternatively, a more succonct set of constraints cs:

Precewise affine dynamics

Suppose we have Nm modes of dynamics to switch between, $\{A^i, B^i\}_{i=1}^{Nm}$

using big-M notation, we can enforce this as:

$$\chi_{R+1} - (A^{i}\chi_{R} + B^{i}u_{R}) \leq M(1 - S^{(i)})$$

$$(A^{i}\chi_{R} + B^{i}u_{R}) - \chi_{R+1} \leq M(1 - S^{(i)})$$

$$\sum_{i=1}^{N_{m}} S^{(i)} = 1$$

Mixed-integer convex programs (MI CPs): if P 25 convex w.r.t. x and u

Mixed-meger nonlinear programs (MINLPs): P

not necessarily convex w.r.t. x and u

MINLPS/MICPS:

Pros:

- powerful a expressive modeling formalism
- captures many task planning and logical constraints

Con:

- worst-case exponential complexity O(2^{nz})
- Far fewer solver options available

For MICPs, for a "reasonable" nz, there exist algorithms that Find globally optimal solutions far faster

45 branch-and-bound, branch-and-cut, Bender's decomposition

Branch-and-bound

Tree-search based approach where each node solves a convex relaxation of the MICP and uses "prung" rules to avoid searching all combinatorial assignments

underlying sidea! if optimization problem P is an MICP where $z_i \in \{0,13\}$, then relaxing this constraint to $z_i \in \{0,1\}$ yields a convex relaxation \overline{P}

-> P: MICP with ZE & EO, 13

P: CP with Zie [0,1]

What can we say about the optimal value J^* for P and the optimal value J^* for P?

⇒ J* ≤ J* smce P has a "larger" feasible set

Key idea behind B&B: drack upper and lower bounds for J* and prune nodes for substrees that carrot yield an improvement to the salution

Track J^{LB} and J^{UB} , such that $J^{LB} \leq J^* \leq J^{UB}$

lermonate when |JLB-JUB| ≤ E How to get JLB & JUB?

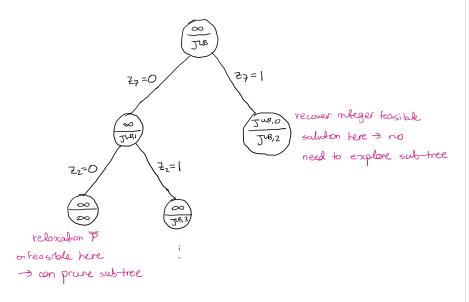
 J^{LB} : at each rode in B&B, $J^{LB} = \overline{J}^*$, where \overline{J}^* is the cost of the convex relaxation at that problem

JuB: cf an onleger feasible solution (i.e., $z \in \{0, 13^{nz}\}$) exists, then this upper bounds J^* as it is a feasible but not recessarily optimal solution

Steps.

1. Solve relaxed \overline{J} with $z \in [0,1]^{nz}$ and set $\overline{J}^{LB} = \overline{J}^*$ Set $\overline{J}^{MB} = \infty$ if no other integer feasible solution exists Set Jub = 00 it no other integer

- 2. Branch on a variable z_i and create two sub-trees with $z_i=0$ and $z_i=1$ each.
- 3. Solve relaxed problem at each node
- 4. Update July July at each rode
- 5. Herate



Three prunny rules:

- 1. If relaxation P is infeasible

 Searching subtree entails solving more constrained
 problems, so cannot possibly yield feasible problem
- 2. If relaxation P yields integral solution

 4 if relaxed soln. has integer value, then no need to branch further
- 3. If relaxation T has a cost $T^* \ge J^{ub}$ 4 relaxed problem attams worse cost than a feasible solution we already have